top of page
Writer's pictureKadiri Praveen

The Future of Education Is Founded on AI, 3D Printing and NewSpace Tech - B-AIM PICK selects

There are currently over 100 million students waiting to become the next generation of engineers, rocket scientists and astrophysicists to get humans from Earth to Mars and beyond, but they may not be able to fulfill their potential simply due to a lack of access to a quality education. According to a study from UNESCO, more than 100 million young people worldwide, 62 to 66 million of whom are girls, are not attending school of any kind. Hundreds of millions more are unable to afford good-quality or safe schools.

However, groups like OneWeb and ONE are aiming to provide universal Internet access worldwide by 2020, greatly expanding the ability to use educational resources online. Nevertheless, Internet access does not guarantee a quality education.

To address this problem, imagine if there was a massive, free online academy where any student or teacher with broadband could learn science, technology, engineering, art and math (STEAM) from educators around the globe, as well as the greatest minds in their fields, including NASA scientists, cutting-edge researchers and NewSpace engineers? On top of that, what if they had an artificially intelligent tutor and mentor to guide them in their learning?

That's what the world's first NewSpace education program, Enterprise In Space (EIS), is trying to achieve, and it all begins with one giant class science project: the design, launch and recovery of a 3D-printed spacecraft that will orbit Earth with 100+ active and passive student experiments and a link to an AI to help the students run them and analyze their data.

Enterprise In Space - NSS Enterprise by EIS on Sketchfab

To pull it off, EIS, a nonprofit program of the National Space Society, has drawn up the plans, put together an expert team of space veterans, raised $27.5 million in in-kind donations and partnered with some of the biggest names in the NewSpace industry. Now, all it needs is $32 million to put the plan in motion and set a course for the stars.

NewSpace Education

To engage students in STEAM education and space exploration, EIS is hosting contests and enlisting students from all grade levels—kindergarten all the way through postgraduate education—to design experiments to be flown aboard a 3D-printed orbiter dubbed the NSS Enterprise. From now until the spacecraft is launched in 2019 or 2020, the winning experiments will be used as the basis for online curricula and lesson plans to populate EIS’ massive open online course platform, known as the EIS Academy.

Once launched, the NSS Enterprise will orbit our planet for up to one month, carrying not only the experiments, but also Ali, an advanced artificial intelligence that will manage the active experiments. Ali will also serve as the voice of the spacecraft, allowing student teams on Earth to engage with the AI platform using natural language. In fact, Ali will eventually act as a personal tutor to students from around the world.

The EIS Academy will be overseen by EIS Education Manager Lynne F. Zielinski, one of the most decorated space educators in the world, who has mentored students to fly experiments in space for

the past 26 years. In speaking with ENGINEERING.com, Zielinski said that the program will not only give students the tools to become engineers, but EIS will train teachers as well. “The whole wrap around here is two-fold: engineering the over 100 student experiments to be sent into space and to tap into the processes necessary to create STEAM learners,” Zielinski explained. “To do that, teachers need training so they can excite the students. A lot of teachers are not necessarily science, technology, engineering or math teachers, and these teachers tend to feel intimidated or shy away from teaching in these disciplines, like art, history or elementary school teachers. They really don’t have an engineering background, so two of the things we want to do is show them that what they teach relates to the technical fields and give them some of the basic engineering knowledge needed to help their students design experiments to fly in space. In short, we want to give them confidence!”

She continued, “When we show them how easy it is—and it really is very easy if our engineering is done right—they feel confident enough to teach their students how to design their experiments. That's the key and one of the things that makes us so different from other programs. When they're concentrating on STEM and not STEAM, they're only focusing on things that are scientifically significant or interesting. We're not. We're saying it can be very, very simple. It can include some artwork, some music, anything. We encourage people to be bold and step out of the perceived norm and their comfort zone.”

Higher Level Education

The EIS Academy will serve not only elementary, middle and high school learners, but also university, doctorate and postdoctoral students as well. EIS will host competitions seeking experiments dedicated to advancing the state of the art in 10 areas. The contest teams will utilize and submit proposals within the Enterprise Centers for Excellence (ECE), where expert researchers and cutting-edge businesses will curate an extensive database of knowledge related to exciting topics such as space-based additive manufacturing, space-based solar power, stem cell research and more.

Zielinski explained that the additive manufacturing, space solar power and orbital space debris mitigation and remediation ECEs are already well developed. Two competitions are nearly ready to launch and will see students at the university and postdoc level participating with established NewSpace businesses to pursue some very challenging scientific concepts.

In the case of the space solar power ECE, hosted in partnership with Ohio University, SPACE Canada and the Canadian Space Society, the winning team will actually send an experiment aboard the NSS Enterprise that will test the ability to generate solar power in space, such as collecting sunlight aboard the spacecraft and delivering power wirelessly to a freeflyer for its mission orbiting Earth.

Eight of the projects that will serve as the basis for the Enterprise Centers for Excellence. (Image courtesy of EIS.)

In the case of the orbital space debris mitigation and remediation ECE, the team will work with Nicola Sarzi-Amadè and Global Aerospace Corporation to utilize the company's Gossamer Orbit Lowering Device to deorbit debris in space.

Zielinski described an ECE as “a place where a wide variety of groups of people with the same interest and different disciplines can all come together and work together on that topic with the best information that we can get our hands on.” Features of the ECEs include:

  • A resource area populated with numerous papers that have all been vetted as the best resources associated with a given topic

  • A cyber library (“Cybrary”)

  • An online journal that publishes juried and approved research and student papers

  • An ephemeral board in which cross-curriculum visitors can present ideas related to the topic

  • A question-and-answer area with access to STEAM mentor

Ali the Artificial Intelligence

While students will be able to monitor the progress of their experiments aboard the NSS Enterprise, the complete EIS Academy will be made open to the public, with students and teachers anywhere able to rely on Ali as a personal tutor and mentor.

In many school systems around the world, students have new teachers with every grade level. In turn, the knowledge, interests and learning style of a student will have to be picked up by new teachers year after year. Teaching coursework for different student learning styles is difficult. Ali, however, will be able to accompany every student as they grow and act as a tool for teachers to address the needs of their classroom more quickly.

At the same time, students will also be able to access Ali on their own time. That way, any topic that isn’t addressed in class can be addressed by the AI. Additionally, Ali can direct the student to a teacher in the EIS Academy who can provide him or her additional topic information in greater depth.

click here to watch:

click here to watch making of B-AIM:

Post: Blog2_Post
bottom of page