The role of robots in the education of the future
Whether robots will replace the work done by humans on a large scale within the next 10 years is currently a subject of heated debate. One question, in particular, stands out from this roundtable: could teachers be replaced by robots?
According to Martin Hamilton [1] (Jisc’s [2] resident futurologist), the technology could boost a teacher’s potential both in schools and in higher education. Hamilton argues that a teacher who has 30 pupils or more in a classroom needs help and a robot assistant “never gets tired, never gets bored and can work in all subjects”. During the same interview, Professor Anthony Seldon (historian and Vice-Chancellor of the University of Buckingham) asserts that new technologies will make it easier to provide personalized education and give teacher-student ratios of 1:1 instead of 1:100 or 1:30, as at present. Seldon believes that this type of new technology (such as the introduction of robot assistants and artificial intelligence [3] in education) will help in developing a personalized study programme for each student and, in turn, students will benefit more from the classes, attaining attention levels close to 100% instead of the current levels of 20-25%. In his latest book [4] (Seldon, 2018), he assesses the future impact of AI in education. Up until now, the prediction that all jobs may be replaced by intelligent robots in the near future had not gained any major traction in those professions in which personal interaction is an important factor. However, this is starting to change. Education is already starting to feel the impact, with the use of data to simulate student behavior and develop intelligent tutoring systems.
An article published in MIT Technology Review [5] discusses the conclusions of the report published by Pearson, the British innovation foundation Nesta and future-gazers from the University of Oxford’s Oxford Martin School. This document studies what effects replacing jobs with robots will have and what people’s roles will be in this, defining what human skills will be in demand in 2030 [6]. Five are highlighted in the United Kingdom [7], which can be easily extrapolated internationally: judgment and decision-making, fluency of ideas, active learning, learning strategies and originality. It suggests that skills such as creativity, adaptability and judgment will be more important than, for example, knowledge of a particular subject or use of a tool, as the former represent intrinsically human skills that are hard to find in a machine, while the latter can be carried out by robots and other systems that use AI.
The purpose of this article is to review the recent developments in robotics that can be used in learning and for performing educational tasks.
Domestic robots
A domestic robot is a type of self-reliant service robot [8] that performs housework, thereby improving the quality of life of those who live in the house. It can also be used for education, entertainment or therapy. Some of these robots have a Wi-Fi connection to intelligent environments and are endowed with a high degree of self-operability thanks to the progress achieved in fog computing [9] and domotics.
There are different classes of domestic robots. Most of them are used to help in performing routine tasks and optimize the use of time, while others are used for entertainment. The classification can be simplified to indoor robots (for cleaning floors, ironing, cooking, security and surveillance), outdoor robots (cleaning gardens and yards, mowing the lawn, cleaning swimming pools), play robots (humanoid robots, electronic pets) and social robots (used to educate, provide company and assistance to people – such as the elderly and patients, and for telepresence).
However, the nomenclature that classifies certain robots as educational robots refers to those that are used as an educational resource and fulfill a teaching purpose. Their main goal is to develop a body of knowledge while fostering student engagement through emotion. Some of these could be included in some of the categories mentioned earlier. Robots have become an educational tool in many primary and secondary schools, increasing the interest in programming, AI and robotics. Universities are starting to include robot programming in their engineering degrees.
In our particular case, we will analyze the role played by the robots that are broadly classified as personal, social or educational robots within learning-related tasks.
-The role of personal robots in learning
In the domestic sphere, there is a type of robot called personal robots. As we have seen, they can perform a series of tasks that make daily life easier. In the particular aspect we are interested in, education, there are various models that help in the learning process and are intended for use in both child and adult education, in language learning or other disciplines.
Temi the personal robot provides insights into the role of robot-driven interactive learning. The video shows different functions typically performed by personal robots, among which we will highlight language learning for children.
Source: https://www.robotemi.com/
Buddy is advertised as an “emotional companion robot”. Alongside surveillance, providing company, taking and making calls and other actions that are also performed by Temi, Buddy is also able to teach people basics of software programming.
Buddy, the emotional robot
-Robots in educational centers. Teacher robots and telepresence
Although there are already many different robotic devices that teach students to learn different subjects and tasks (from mechanical arms for engineers to simulators), we will focus on how robots are entering classrooms to teach a variety of subjects, from languages (native or foreign languages) to social skills. They can even provide reinforcement in teaching a particular subject or in attending to students, becoming in many cases teaching assistants or even actual teachers. In other cases, however, they become a sort of avatar for the students who opt for the telepresence system; although in these cases their role does not arise from AI but from the possibility of letting students interact remotely with their classmates.
The Pepper programmable robots and their “little brother” Nao (which we will get to later) have been developed by the company SoftBank Robotics. These two robots are currently evolving within the education sector as teacher assistance tools and also as platforms for learning how to program, from primary school to higher education.
Thanks to its appearances in the media, Pepper is a fairly well-known case in which several types of robot have been merged into a single machine. This humanoid robot has been endowed with emotional intelligence and there are secondary and higher education centers that are planning to use it for learning assistance. One case is Pepper’s presence in language classes at the Shoshi High School in Waseda, Fukushima prefecture Japan, where the robot studies together with the human pupils. Pepper is also gaining a foothold in European higher education. At the latest 4YFN (4 Years From Now), Pepper acted as assistant in the simulation of an international business class given by professor Pedro Parada from ESADE Business School [10]. The intention was to show how the robot can animate and personalize classes, encouraging student participation by interacting with them, getting to know them personally, and answering questions about class content and planning. The robot will also enter the classrooms of the London Design and Engineering University Technical College to assist in teaching cutting-edge robotics, together with 12 units of the small Nao.
Pepper and NAO in the London Design & Engineering UTC
At the Paul Bert school in Poitiers, France, Nao teaches French grammar to children, first showing them a video and then giving a questionnaire that the pupils answer as a group. The robot has stored a series of resources in its database and uses audiovisuals to hold the pupils’ attention. The teacher, Serge Evreinoff, is with them, supervising the class and telling the pupils when it is their turn to speak. At the end, he gives his opinion about the questions asked by Nao, explaining that the pupils have been more participative than usual, with a greater degree of enthusiasm and attention, and unafraid of adults’ opinions or judgments. Evreinoff wonders what role this type of device could play in day-to-day school life. He believes that the “Nao of tomorrow” will support learning individualization: “The computer must become an extension of the teacher”. He also says that “robots can help children and teenagers acquire a greater awareness of computer programming”.
A frame of the video NAO at School in Poitiers, France, with Canopy Network (https://youtu.be/vzAfuWFt9cg).
At the University of Montana in the USA, instead of having a robot teacher, it is the students themselves who have become “robotized” [11]. The offsite students in the classes interact with the onsite students through cameras on remote-controlled robots equipped with wheels and a screen. The hope is that this will enable students hundreds of miles away from each other to take part in the same classes and feel more connected with the group than would be possible using standard videoconference links.
Every day, before the students arrive for class, the teacher leading the Bill McCaw initiative turns on the Double Robotics robots, disconnects them from their charging stations and organizes them so that they are ready for the students. These robots are a kind of small Segway with an iPad on top. Meanwhile, the remote students log on and choose the robot they want to use (each one has a name, like Aristotle or Rosa Parks). The remote students can see their fellow students through the video screen and also control the device to move around the classroom or turn to face the other students and interact with them.
A frame of the Double Robotics video showing the devices robotized by the remote students (https://www.youtube.com/watch?v=Rml5GiRxtTs)
Hybrid learning at Michigan State University (MSU) with the Kubi telepresence robots (www.revolverobotics.com)
The PhD programme in Educational Psychology and Educational Technology (EPET) focuses on studying human learning and development and on different technologies that support learning and teaching. During a course held in spring 2015 [12], the students took part using an Apple iPad placed on a robot that swivelled on a fixed pedestal; another student interacted via a robot that could move around the classroom. The revolving pedestal, called Kubi (made by Revolve Robotics), lets telepresence students be a part of university and school classes. A drawback? Without the wheels, Kubi needs someone to move it around and put it in the classroom. However, the same Ph.D. programme has now started to use another type of robot, the Beam Robotic Telepresence made by Suitable Tech. They are similar to Double Robotics’ mobile pedestals but have an integrated camera and screen.
Smart toy robots used in learning and accompanied learning
Some robots, which are more attractive more affordable for the general public, are marketed in a toy format, even though their purpose continues to be education [13] and children’s education in particular. Some of these robots can be programmed by the children and, in other cases, they play the role of companion to guide or help them in their learning process.
-Learning coding and programming
Different types of devices are available for learning robotics and programming. Some of them use mobile phones: with the phone, users can control the toy using an app. There are a number projects that are still in an incipient stage of development or which are raising capital through crowdfunding websites; one of them is Romo, a small robot that uses a smartphone for its brain. Using another mobile device and a multi-platform app, users can move it around, make it show animated facial expressions, make it dance or turn it into a spybot. Romo is simple and very different from the typical image of the personal robot. In order to find another, more complex type of robot (also funded by crowdfunding), we need to turn our gaze towards products such as Antbo, an insect-shaped robot designed to help children learn robotics and programming. It has a scanning system that enables it to perceive and explore its environment, using its neural system to process and react to stimuli. Antbo has an accelerometer and touch, sound, light and distance sensors.
click here to watch making of B-AIM: